Propulsive Force Measurements and Flow Behavior of Undulatory Swimmers at Low Reynolds Number
نویسندگان
چکیده
The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode’s swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are supported by values obtained using resistive force theory; the ratio of normal to tangential drag coefficients is estimated to be approximately 1.4. Over the range of solutions investigated here, the flow properties remain largely independent of viscosity. Velocity magnitudes of the flow away from the nematode body decay rapidly within less than a body length and collapse onto a single master curve. Overall, our findings support that C. elegans is an attractive living model to study the coupling between small-scale propulsion and low Reynolds number hydrodynamics. Disciplines Engineering | Mechanical Engineering Comments Suggested Citation: J. Sznitman, X. Shen, R. Sznitman and P.E. Arratia. (2010). "Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number." Physics of Fluids 22, 121901. © 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Fluids and may be found at http://dx.doi.org/10.1063/1.3529236. This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/264 Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number J. Sznitman, X. Shen, R. Sznitman, and P. E. Arratia Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 2128, USA Received 18 June 2010; accepted 30 November 2010; published online 22 December 2010 The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode’s swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are supported by values obtained using resistive force theory; the ratio of normal to tangential drag coefficients is estimated to be approximately 1.4. Over the range of solutions investigated here, the flow properties remain largely independent of viscosity. Velocity magnitudes of the flow away from the nematode body decay rapidly within less than a body length and collapse onto a single master curve. Overall, our findings support that C. elegans is an attractive living model to study the coupling between small-scale propulsion and low Reynolds number hydrodynamics. © 2010 American Institute of Physics. doi:10.1063/1.3529236
منابع مشابه
How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish.
Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swim...
متن کاملOptimal morphokinematics for undulatory swimmers at intermediate Reynolds numbers
Undulatory locomotion is an archetypal mode of propulsion for natural swimmers across scales. Undulatory swimmers convert transverse body oscillations into forward velocity by a complex interplay between their flexural movements, morphological features and the fluid environment. Natural evolution has produced a wide range of morphokinematic examples of undulatory swimmers that often serve as in...
متن کاملNumerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
We employ numerical simulation to investigate the hydrodynamic performance of anguilliform locomotion and compare it with that of carangiform swimming as the Reynolds number (Re) and the tail-beat frequency (Strouhal number, St) are systematically varied. The virtual swimmer is a 3-D lamprey-like flexible body undulating with prescribed experimental kinematics of anguilliform type. Simulations ...
متن کاملPropensity of undulatory swimmers, such as worms, to go against the flow.
The ability to orient oneself in response to environmental cues is crucial to the survival and function of diverse organisms. One such orientation behavior is the alignment of aquatic organisms with (negative rheotaxis) or against (positive rheotaxis) fluid current. The questions of whether low-Reynolds-number, undulatory swimmers, such as worms, rheotax and whether rheotaxis is a deliberate or...
متن کاملThe boundary layer of swimming fish.
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout comple...
متن کامل